32 research outputs found

    The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) Program: A government overview

    Get PDF
    LaRC, under the Design Analysis Methods for Vibrations (DAMVIBS) Program, set out in 1984 to establish the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. Considerable work was performed by the industry participants in the program since that time. Because the DAMVIBS Program is being phased out, a government/industry assessment of the program was made to identify those accomplishments and contributions which may be ascribed to the program. The purpose is to provide an overview of the program and its accomplishments and contributions from the perspective of the government sponsoring organization

    A Government/Industry Summary of the Design Analysis Methods for Vibrations (DAMVIBS) Program

    Get PDF
    The NASA Langley Research Center in 1984 initiated a rotorcraft structural dynamics program, designated DAMVIBS (Design Analysis Methods for VIBrationS), with the objective of establishing the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. An assessment of the program showed that the DAMVIBS Program has resulted in notable technical achievements and major changes in industrial design practice, all of which have significantly advanced the industry's capability to use and rely on finite-element-based dynamics analyses during the design process

    The NASA/industry design analysis methods for vibrations (DAMVIBS) program: Accomplishments and contributions

    Get PDF
    A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry

    Langley rotorcraft structural dynamics program: Background, status, accomplishments, plans

    Get PDF
    Excessive vibration is the most common technical problem to arise as a show stopper in the development of a new rotorcraft. Vibration predictions have not been relied on by the industry during design because of deficiencies in finite element dynamic analyses. A rotorcraft structural dynamics program aimed at meeting the industry's long-term needs in this key technical area was implemented at Langley in 1984. The subject program is a cooperative effort involving NASA, the Army, academia, and the helicopter industry in a series of generic research activities directed at establishing the critical elements of the technology base needed for development of a superior finite element dynamics design analysis capability in the U.S. helicopter industry. An executive overview of the background, status, accomplishments, and future direction of this program is presented

    Airframe structural dynamic considerations in rotor design optimization

    Get PDF
    An an overview and discussion of those aspects of airframe structural dynamics that have a strong influence on rotor design optimization is provided. Primary emphasis is on vibration requirements. The vibration problem is described, the key vibratory forces are identified, the role of airframe response in rotor design is summarized, and the types of constraints which need to be imposed on rotor design due to airframe dynamics are discussed. Some considerations of ground and air resonance as they might affect rotor design are included

    Airframe design considerations: Overview

    Get PDF
    Aspects of airframe structural dynamics that have a strong influence on rotor design optimization are presented . Primary emphasis is on vibration requirements. The constraints imposed on rotor design by airframe dynamics are discussed. Rotor/airframe modeling enhancements are also described

    Experiences at Langley Research Center in the application of optimization techniques to helicopter airframes for vibration reduction

    Get PDF
    A NASA/industry rotorcraft structural dynamics program known as Design Analysis Methods for VIBrationS (DAMVIBS) was initiated at Langley Research Center in 1984 with the objective of establishing the technology base needed by the industry for developing an advanced finite-element-based vibrations design analysis capability for airframe structures. As a part of the in-house activities contributing to that program, a study was undertaken to investigate the use of formal, nonlinear programming-based, numerical optimization techniques for airframe vibrations design work. Considerable progress has been made in connection with that study since its inception in 1985. This paper presents a unified summary of the experiences and results of that study. The formulation and solution of airframe optimization problems are discussed. Particular attention is given to describing the implementation of a new computational procedure based on MSC/NASTRAN and CONstrained function MINimization (CONMIN) in a computer program system called DYNOPT for the optimization of airframes subject to strength, frequency, dynamic response, and fatigue constraints. The results from the application of the DYNOPT program to the Bell AH-1G helicopter are presented and discussed

    An integrating matrix formulation for buckling of rotating beams including the effects of concentrated masses

    Get PDF
    The integrating matrix technique of computational mechanics is extended to include the effects of concentrated masses. The stability of a flexible rotating beam with discrete masses is analyzed to determine the critical rotational speeds for buckling in the inplane and out-of-plane directions. In this problem, the beam is subjected to compressive centrifugal forces arising from steady rotation about an axis which does not pass through the clamped end of the beam. To determine the eigenvalues from which stability is assessed, the differential equations of motion are solved numerically by combining the extended integrating matrix method with an eigenanalysis. Stability boundaries for a discrete mass representation of a uniform beam are shown to asymptotically approach the stability boundaries for the corresponding continuous mass beam as the number of concentrated masses is increased. An error in the literature is also noted for the discrete mass problem concerning the behavior of the critical rotational speed for inplane buckling as the radius of rotation of the clamped end of the beam is reduced

    A historical overview of tiltrotor aeroelastic research at Langley Research Center

    Get PDF
    The Bell/Boeing V-22 Osprey which is being developed for the U.S. Military is a tiltrotor aircraft combining the versatility of a helicopter with the range and speed of a turboprop airplane. The V-22 represents a tiltrotor lineage which goes back over forty years, during which time contributions to the technology base needed for its development were made by both government and industry. NASA Langley Research Center has made substantial contributions to tiltrotor technology in several areas, in particular in the area of aeroelasticity. The purpose of this talk is to present a summary of the tiltrotor aeroelastic research conducted at Langley which has contributed to that technology

    A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology

    Get PDF
    The requirement for low vibrations has achieved the status of a critical design consideration in modern helicopters. There is now a recognized need to account for vibrations during both the analytical and experimental phases of design. Research activities in this area were both broad and varied and notable advances were made in recent years in the critical elements of the technology base needed to achieve the goal of a jet smooth ride. The purpose is to present an overview of accomplishments and current activities of govern and government-sponsored research in the area of rotorcraft vibrations and structural dynamics, focusing on NASA and Army contributions over the last decade or so. Specific topics addressed include: airframe finite-element modeling for static and dynamic analyses, analysis of coupled rotor-airframe vibrations, optimization of airframes subject to vibration constraints, active and passive control of vibrations in both the rotating and fixed systems, and integration of testing and analysis in such guises as modal analysis, system identification, structural modification, and vibratory loads measurement
    corecore